Predibase
Predibase allows you to train, fine-tune, and deploy any ML modelโfrom linear regression to large language model.
This example demonstrates using Langchain with models deployed on Predibase
Setup
To run this notebook, youโll need a Predibase account and an API key.
Youโll also need to install the Predibase Python package:
!pip install predibase
import os
os.environ["PREDIBASE_API_TOKEN"] = "{PREDIBASE_API_TOKEN}"
Initial Callโ
from langchain.llms import Predibase
model = Predibase(
model="vicuna-13b", predibase_api_key=os.environ.get("PREDIBASE_API_TOKEN")
)
response = model("Can you recommend me a nice dry wine?")
print(response)
Chain Call Setupโ
llm = Predibase(
model="vicuna-13b", predibase_api_key=os.environ.get("PREDIBASE_API_TOKEN")
)
SequentialChainโ
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# This is an LLMChain to write a synopsis given a title of a play.
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)
# This is an LLMChain to write a review of a play given a synopsis.
template = """You are a play critic from the New York Times. Given the synopsis of play, it is your job to write a review for that play.
Play Synopsis:
{synopsis}
Review from a New York Times play critic of the above play:"""
prompt_template = PromptTemplate(input_variables=["synopsis"], template=template)
review_chain = LLMChain(llm=llm, prompt=prompt_template)
# This is the overall chain where we run these two chains in sequence.
from langchain.chains import SimpleSequentialChain
overall_chain = SimpleSequentialChain(
chains=[synopsis_chain, review_chain], verbose=True
)
review = overall_chain.run("Tragedy at sunset on the beach")
Fine-tuned LLM (Use your own fine-tuned LLM from Predibase)โ
from langchain.llms import Predibase
model = Predibase(
model="my-finetuned-LLM", predibase_api_key=os.environ.get("PREDIBASE_API_TOKEN")
)
# replace my-finetuned-LLM with the name of your model in Predibase
# response = model("Can you help categorize the following emails into positive, negative, and neutral?")