Log10
This page covers how to use the Log10 within LangChain.
What is Log10?β
Log10 is an open-source proxiless LLM data management and application development platform that lets you log, debug and tag your Langchain calls.
Quick startβ
- Create your free account at log10.io
- Add your
LOG10_TOKEN
andLOG10_ORG_ID
from the Settings and Organization tabs respectively as environment variables. - Also add
LOG10_URL=https://log10.io
and your usual LLM API key: for e.g.OPENAI_API_KEY
orANTHROPIC_API_KEY
to your environment
How to enable Log10 data management for Langchainβ
Integration with log10 is a simple one-line log10_callback
integration as shown below:
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
from log10.langchain import Log10Callback
from log10.llm import Log10Config
log10_callback = Log10Callback(log10_config=Log10Config())
messages = [
HumanMessage(content="You are a ping pong machine"),
HumanMessage(content="Ping?"),
]
llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback])
More details + screenshots including instructions for self-hosting logs
How to use tags with Log10β
from langchain.llms import OpenAI
from langchain.chat_models import ChatAnthropic
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage
from log10.langchain import Log10Callback
from log10.llm import Log10Config
log10_callback = Log10Callback(log10_config=Log10Config())
messages = [
HumanMessage(content="You are a ping pong machine"),
HumanMessage(content="Ping?"),
]
llm = ChatOpenAI(model_name="gpt-3.5-turbo", callbacks=[log10_callback], temperature=0.5, tags=["test"])
completion = llm.predict_messages(messages, tags=["foobar"])
print(completion)
llm = ChatAnthropic(model="claude-2", callbacks=[log10_callback], temperature=0.7, tags=["baz"])
llm.predict_messages(messages)
print(completion)
llm = OpenAI(model_name="gpt-3.5-turbo-instruct", callbacks=[log10_callback], temperature=0.5)
completion = llm.predict("You are a ping pong machine.\nPing?\n")
print(completion)
You can also intermix direct OpenAI calls and Langchain LLM calls:
import os
from log10.load import log10, log10_session
import openai
from langchain.llms import OpenAI
log10(openai)
with log10_session(tags=["foo", "bar"]):
# Log a direct OpenAI call
response = openai.Completion.create(
model="text-ada-001",
prompt="Where is the Eiffel Tower?",
temperature=0,
max_tokens=1024,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
print(response)
# Log a call via Langchain
llm = OpenAI(model_name="text-ada-001", temperature=0.5)
response = llm.predict("You are a ping pong machine.\nPing?\n")
print(response)