Pinecone
Pinecone is a vector database with broad functionality.
This notebook shows how to use functionality related to the Pinecone
vector database.
To use Pinecone, you must have an API key. Here are the installation instructions.
!pip install pinecone-client openai tiktoken langchain
import getpass
import os
os.environ["PINECONE_API_KEY"] = getpass.getpass("Pinecone API Key:")
os.environ["PINECONE_ENV"] = getpass.getpass("Pinecone Environment:")
We want to use OpenAIEmbeddings
so we have to get the OpenAI API Key.
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Pinecone
from langchain.document_loaders import TextLoader
loader = TextLoader("../../modules/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
import pinecone
# initialize pinecone
pinecone.init(
api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io
environment=os.getenv("PINECONE_ENV"), # next to api key in console
)
index_name = "langchain-demo"
# First, check if our index already exists. If it doesn't, we create it
if index_name not in pinecone.list_indexes():
# we create a new index
pinecone.create_index(name=index_name, metric="cosine", dimension=1536)
# The OpenAI embedding model `text-embedding-ada-002 uses 1536 dimensions`
docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)
# if you already have an index, you can load it like this
# docsearch = Pinecone.from_existing_index(index_name, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
Adding More Text to an Existing Index
More text can embedded and upserted to an existing Pinecone index using
the add_texts
function
index = pinecone.Index("langchain-demo")
vectorstore = Pinecone(index, embeddings.embed_query, "text")
vectorstore.add_texts("More text!")
Maximal Marginal Relevance Searches
In addition to using similarity search in the retriever object, you can
also use mmr
as retriever.
retriever = docsearch.as_retriever(search_type="mmr")
matched_docs = retriever.get_relevant_documents(query)
for i, d in enumerate(matched_docs):
print(f"\n## Document {i}\n")
print(d.page_content)
Or use max_marginal_relevance_search
directly:
found_docs = docsearch.max_marginal_relevance_search(query, k=2, fetch_k=10)
for i, doc in enumerate(found_docs):
print(f"{i + 1}.", doc.page_content, "\n")